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Preface

Mechanics is that funny branch of physics where, by studying matter in motion as if that’s all there
is to worry about, we unwittingly develop a much more profound base of ideas. The universe is not,
as once believed, fundamentally mechanistic, but mechanics remains key context and background
for deeper physics. And it is decidedly interesting in its own right, describing many familiar
phenomena—and predicting some really fun surprises—in an elegant mathematical framework. In
this new book designed especially for a new generation of students, I hope you—like me—will find
mechanics to be cohesive, relevant, and fun.

Is mechanics cohesive? There are many different frameworks, and they are interrelated. But
they do proceed from simple assumptions and have digestible regimes of validity, and I have carefully
organized the book to bring out these relationships. For example, I use the general theory of
constraints to provide the logical link between Newtonian and Lagrangian mechanics, where the
latter naturally emerges as simplified description of a particular subset of Newtonian systems (those
with conservative forces and holonomic constraints). At the same time, one must recognize that
Lagrangian methods apply well beyond mechanics, and my presentation is geared up for this broader
application. I embrace this dichotomy: we study mechanical systems but discover powerful tools
and ideas that take us far beyond these humble beginnings.

Is mechanics relevant? You bet. You’ll use the results directly if you study astrophysics, space
science, or biophysics; and everywhere else in physics you’ll build on the methods. Statistical physics
leverages the Liouville theorem and ergodicity. You’ll need Hamiltonians in quantum mechanics,
and you’ll find Hamilton-Jacobi theory in its classical limit. In quantum field theory the action
is central, and Noether’s theorem is a foundation. In any subject, you’ll study small deviations
from equilibrium, for which normal modes are the fundamental intuition. I cover these topics with
particular attention to how students will use the tools in the future.

Is mechanics fun? Yes! For most of us, Newton’s laws were the first hint of how a proper
framework can explain the world around us, and the fun only increases with the fancier approaches.
Do you know why spacecraft never spin like bullets? I bet you like Lagrangians (if you’ve studied
them), but roboticists actually prefer their robots not to have one: Do you know why? It has to
do with the fact that, when parking a car, you are acting out a commutator. Pop quiz: What
property of rotations is a headache for computer game designers, a hazard for astronauts, and a
necessity for electrons? All this fun is born of mechanics. I have taught these topics to first-year
graduate students for some years now, and observed so many satisfying light-bulb moments. With
this book, I hope to give you some of your own!

Organization of the book

There are parts, each with three chapters.

Part I (“the core framework”) sets up foundations by advancing from Newtonian mechanics to
D’Alembertian mechanics to Lagrangian mechanics. This middle topic is my name for theory of
generalized coordinates and constraints, which is either missing or unemphasized in the standard
texts. I do not really understand why: it is the logical glue between Newtonian and Lagrangian
methods; it is no more difficult than the rest of the mechanics; and it is of real importance for mod-
eling mechanical systems of any complexity (as roboticists well know). I cover all three approaches
in a new way, with a modern emphasis on symmetry: mechanics for the 21st century.
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Part II (“some classic problems”) applies the core framework to a set of systems traditionally
(and profitably) associated with mechanics instruction. We think about central forces, scattering,
oscillations, and rigid bodies. Here there is less pedagogical innovation, but I am quite proud of
the treatment of rigid bodies. I think I found a nice way to mix in the needed formal proofs as
part of developing physical intuition, and I included connections to computer graphics, fermions,
and space exploration.

Part III (“Specialized methods”) turns to techniques and approaches that are rather specialized
(arguably niche!) from the perspective of describing mechanical systems, but hugely important in
other areas: Hamiltonian mechanics, Hamilton-Jacobi theory, and adiabatic invariance (including
action-angle variables). I prove big theorems when possible (Liuoville, Poincaré), describe them
when not (KAM), and constantly connect to other branches of physics (quantum theory, optics,
plasma physics, general relativity). Many topics in part III lead right out of mechanics into giant
subjects in their own right, so the treatment necessarily just scratches the surface. Consider it an
appetizer: I hope that readers finish the book with a thorough understanding of mechanics and an
appetite for the rest of physics!

Intended audience

This is a book for learning mechanics. The assumption is that the reader has already learned
some physics elsewhere: at the very least college-level Newtonian mechanics, and more-than-likely
something about Lagrangians as well. However, if you do not have this background, I would not
give up, since everything is logically contained, and my goal is to be as accessible as possible.
Just ignore the places where I say things like “you probably have heard of such and such...” or
“sometimes people say...”. These are for typical students raised in typical physics departments, who
imbibe a traditional approach that is excellent on balance, but not entirely free of misconceptions.
For these folks, it is helpful to make direct contact with their prior education.

This is not a book about mathematical approaches (manifolds, forms, etc.). As a practicing
relativist I do have a healthy respect for coordinate-free thinking, but I don’t want to assume that
readers know about manifolds, and it would take me too far afield to develop the tools in situ.
If you have a taste for the mathematical, I would recommend Arnold’s excellent book. It (rather
inexplicably) leaves out the theory of constraints, but if you read my treatment you can easily
translate to manifolds (Frobenius and all that). I do hope that mathematically-inclined readers
will also like my book, and when we come to results that can can be profitably understood on
manifolds, I always make a few comments for such readers.

This is also not a mechanics encyclopedia. My focus is on the topics and level suitable for
learning the subject coherently, and in a reasonable amount of time. However, topics left out of
the book are not left out of mind. There is no relativity in the book, but in the very first chapter
I show how spacetime symmetries naturally appear even in Newtonian mechanics. There are no
fields in the book (only particles), but my treatments of Noether’s theorem and Hamilton-Jacobi
theory (for example) are designed to make the generalization natural. I do not attempt a coherent
treatment of chaos, but when it crops up I hit the highlights.

This is a book for 21st-century graduate course on mechanics. This is why I wrote it and
how I use it. The topics and level are selected for this application, and I dare say there isn’t a
better book for it. If you are planning a course at your own institution, just start at the beginning
and go through the book. There are clearly-marked optional sections (not required for future
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developments), so you can adjust the length/speed of the course accordingly—either in advance or
as you go along. The same comments apply for self-study. My personal advice is not to plan too
much: just get going.

Bon voyage

If you made it this far, perhaps you are ready to begin your journey through mechanics, with me
as your guide. As encouragement, let me say how satisfying my own journey has been, as a student
first, then teacher, and finally textbook author. Thinking back, I am amazed at how much fun
it has been to engage deeply with the material we call mechanics. The oldest subject in physics
is still fresh today, finding lively application and connecting with the deepest open questions. In
this book I have tried to put everything together, in a logical order, with a modern viewpoint and
modern applications. I do think this synthesis is genuinely new. I hope you enjoy it as much as I
did.
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